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a b s t r a c t

Module skew codes are one sidedmodules for (a quotient of) a skewpolynomial ringwhere
multiplication is twisted by an automorphism of the Galois group of the alphabet field. We
prove that long module skew codes over a fixed finite field are asymptotically good by
using a non-constructive counting argument. We show that for fixed alphabet size, and
automorphism order and large length their asymptotic rate and relative distance satisfy a
modified Varshamov–Gilbert bound.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cyclic codes form an important family of linear codes [11], studied since the fifties for their favorable encoding and
decoding properties. In spite of a long attention span and of recent results [1] it is still an open problem to know if long
cyclic codes are good [11, p. 270]. The folklore conjecture is that they are not.

Skew cyclic codes were introduced by Ulmer et al. in [2] as a non commutative generalization of cyclic codes. Because of
the non unicity of factorization of the skew polynomial ring that enters their definition, the population of such codes even
in short lengths outnumbers that of cyclic codes. It is thus natural to conjecture that they form a good class of codes in the
asymptotic sense.

In this paper we shall prove that module skew codes, a generalization of skew cyclic codes [3,4], are asymptotically good,
in the sense that the product of their rate by their relative distance is nonzero for the rate in some interval of (0, 1) depending
on the field size. To show this we will derive a modified Varshamov–Gilbert bound on the rate by a counting argument. The
proof is inspired from the analogous result for the special case of q = 2 and r = 1 from [8, Appendix II]. That old result
is saying that polycyclic codes are good. Polycyclic codes in the sense of [10] are ideals in some quotient ring of the form
F [x]/(f ), where f is a polynomial of degree n that may not be xn −1. It is well-known and easy to prove that polycyclic codes
(aka pseudo-cyclic codes) are exactly shortened cyclic codes [12, p. 241].

2. Definitions and notation

2.1. Skew cyclic codes

Let F denote a finite field of characteristic p and size q = pa. Let σ denote an element of its Galois group, of order r ,
so that r divides a. If a = rm, then the fixed field of σ has order Q = pm. Let us recall that the ring of skew polynomials
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in X denoted R = F [X; σ ] is the ring whose elements are polynomials
n

i=0 aiX
i with coefficients a0, . . . , an in F with the

standard addition of polynomials but multiplication is based on the commutation rule Xa = σ(a)X , for all a ∈ F . By a
module skew code of length n we shall mean a left submodule of the left R-module Rf = R/Rf where f ≠ 0 is arbitrary of
degree n. Since R is left Euclidean it is easy to see that such a submodule is of the form Rg/Rf , where g right divides f .

2.2. Asymptotic bounds

Let Cn be a sequence of codes of length n, dimension kn, and minimum distance dn over F . The asymptotic rate ρ of the
family is defined as

ρ = lim sup
n→∞

kn
n
.

The asymptotic relative distance δ is defined as

δ = lim sup
n→∞

dn
n
.

A family of codes is said to be good if ρδ > 0. Define the symmetric q-ary entropy function as

Hq(x) = −x logq(x)− (1 − x) logq(1 − x)+ x logq(q − 1). (1)

The volume V (n, q, t) of the Hamming ball of radius t about the origin is given by

V (n, q, t) =

t
i=0

n
i


(q − 1)i.

By [5, Lemma 2.10.3] we know that when t ∼ τn, for some τ ∈ (0, 1), we have

lim
n→∞


logq(V (n, q, t))

n


= Hq(τ ).

The asymptotic Varshamov–Gilbert bound says (cf. Theorem 30, p. 557 in [11]) that there are families of codes such that

ρ ≥ 1 − Hq(δ).

3. Counting codes

We consider a polynomial f ∈ R = F [X; σ ], where F is a finite field of order q = pa and σ is an automorphism of order r .
We denote the number of fixed elements by Q . It is well known that factorization in R = F [X; σ ] has the following property
(cf. P.M. Cohn [6]): If f1 . . . fl = g1 . . . gr are two factorizations where the polynomials f1 . . . , fl, g1, . . . , gr are all irreducible,
then l = r and there exists a permutation τ ∈ Sn such that for every 1 ≤ i ≤ l we have an isomorphism of left R-modules
R/Rfi ∼= R/Rgτ(i).

In his thesis J. Le Borgne introduced a map ψ from R to its center. The next lemma can be found in [9], Corollary 4.5 and
Proposition 5.2.

Lemma 1. (a) Two monic polynomials f and g are similar if and only if ψ(f ) = ψ(g).
(b) For a polynomial f ∈ R = F [x; σ ] of degree t, the number of g ∈ R with ψ(g) = ψ(f ) is

qt − 1
Q t − 1

.

We use this result to compute the number of irreducible factors. For a polynomial P ∈ R; we will say that ψ(P) is the
norm of P .

Lemma 2. The number of irreducible polynomials of degree t that divide a polynomial f of degree n is at most n
t

qt−1
Q t−1 .

Proof. The number of similarity classes of irreducible factors of f of degree t that appears in a factorization of f is bounded
by n/t . The similarity class of such a degree t factor of f has a number of elements given by the part (b) of Lemma 1. This
gives the required bound. �

Let φ(q, r; t) denote the number of irreducible polynomials of degree t in R = F [X; σ ].

Proposition 1. If
n
t
qt − 1
Q t − 1

 d−2
i=0


n − 1

i


(q − 1)i < φ(q, r; t),

then there is a module skew code of length n codimension t and minimum distance ≥ d.
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Proof. We restrict our attention to skew cyclic codes with an irreducible generator polynomial f ∈ R = F [X; σ ] of degree
n. The number of elements in the Hamming ball of radius d − 2 is given by

d−2
i=0


n − 1

i


(q − 1)i.

These correspond to polynomials of degree at most n and, by Lemma 2, can be divided by at most ⌊
n
t

qt−1
Q t−1⌋ irreducible

generator polynomials. Therefore the hypothesis on the number of irreducible polynomial of degree t , shows that there
exist enough generator polynomials for skew cyclic codes of length nwith distance d to exist. �

We need an estimate on φ(q, r; t).

Lemma 3. The number φ(q, r; t), for fixed q and large t is, up to sub exponential terms, of order qt .

Proof. An exact formula for φ(q, r; t), is given in [9, Cor. II.5.3], [7] by

φ(q, r; t) =
(q − 1)

t
qt − 1
Q t − 1


i|t

µ


t
i


Q i

where µ denotes the Moebius function. Note that µ(1) = 1. For large t and q fixed (hence also Q fixed) we have

φ(q, r; t) ∼
(q − 1)qt

t
.

The result follows. �

We are now ready for the main result, an asymptotic version of the proposition.

Theorem 1. Given q and r there are skew cyclic codes for an automorphism of order r satisfying the modified Varshamov–Gilbert
bound

(1 − ρ) ≤ rHq(δ).

Proof. Note first that Q = q1/r . Also observe that the codimension of a skew cyclic code equals the degree of its generator
polynomial, implying t = n−k so that, for n large we have t

n → 1−ρ. Combine the propositionwith the preceding lemma;
observe that the sum that appears on the left hand side is of the same order as V (n, q, d) for large n. We obtain, after taking
logs, dividing by n and taking limits, the existence of families of codes with parameters

−
1 − ρ

r
+ Hq(δ) ≤ −ϵ,

for all ϵ > 0. Therefore letting ϵ → 0, we get

−
1 − ρ

r
+ Hq(δ) = 0.

The result follows. �

4. Conclusion and open problems

In this note we have shown that module skew codes, a non commutative analogue of polycyclic codes are good. Indeed
their asymptotic parameters satisfy a modified Varshamov–Gilbert bound. The main open problem would be to derive the
same result for so-called σ -cyclic codes which are the special case where the polynomial f that defines Rf is Xn

− 1. That
subclass is the skew analogue of classical cyclic codes. This problemmight be as difficult as for ordinary cyclic codes. Another
open problem that emerges from the present study is the minimum distance of module skew codes with an irreducible
generator polynomial. It might be interesting to look at codes of modest length in that family.
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